Substitution in Bis-(2,2'-bipyridyl)biscyanoiron(II) in Aqueous Ethanol

By J. BURGESS

(Department of Chemistry, University of Leicester, Leicester LE1 7RH)

Summary The mechanism of substitution for the uncharged complex [Fe bipy2(CN)2]⁰ has been investigated by the Grunwald-Winstein method of determining the solvent variation of rate constant.

THE role of water in transition state formation for aquation of octahedral complexes continues to be a matter for discussion. One way of examining this role is to apply the Grunwald-Winstein¹ treatment of dependence of reaction rate on solvent properties, which has been widely used in organic chemistry, to this problem. This approach has

FIGURE. Correlation of logarithms of first-order rate constants (k₁)

been tried, but its validity in these earlier cases^{2,3} is open

to some question since the complexes involved were charged

ions rather than neutral molecules. We now report

kinetic results for substitution of the 2,2'-bipyridyl ligand

in the zero-charged complex bis-(2,2'-bipyridyl)biscyano-

iron(II), [Fe bipy2(CN)2], by 1,10-phenanthroline. In this

system all reactants and products are uncharged species,

for substitution at $[Fe \ bipy_2(CN)_2]^0$ with solvent Y values.

so the Grunwald-Winstein treatment can be used without the introduction of further assumptions or modifications.

Kinetics were followed spectrophotometrically at 35.0° in the thermostatted cell compartment of a Unicam SP800A recording spectrophotometer. First-order kinetics were closely followed; graphically determined first-order rate constants are reported in the Table. Decadic logarithms

Average first-order constants for substitution of bis-(2,2'-bipyridyl)biscyanoiron(II), initial concentration 1.8×10^{-4} M, by 1,10-phenanthroline, initial concentration 4.1 or 8.2×10^{-3} M, in aqueous ethanol at 35.0° . Solvent Y-values are taken from reference 1

Y	$\frac{10^6 k_1}{(\text{sec.}^{-1})}$
3.49	(2.8)*
3.05	1.6
$2 \cdot 20$	1.1
1.12	0.9
0	0.4
	$Y \\ 3.49 \\ 3.05 \\ 2.20 \\ 1.12 \\ 0$

* Approximate value; product very sparingly soluble.

of these rate constants correlate with Grunwald-Winstein solvent Y values (see Figure). The slope of this correlation graph is 0.2. This is far from the value of 1.0 expected for an $S_N l$ (lim) mechanism, but is rather in the region expected for $S_N 2$ hydrolysis [cf. the value of 0.3 for $S_N 2$ hydrolysis of $(Me_2N)_2$ POCl⁴]. In view of the π -withdrawing properties of cyanide ligands this is not too surprising. It would now be interesting to extend this investigation to uncharged cobalt(III)-ammine complexes, whose mechanism of substitution is generally considered to be primarily dissociative.

(Received, October 17th, 1969; Com. 1574.)

¹ E. Grunwald and S. Winstein, J. Amer. Chem. Soc., 1948, 70, 846; P. R. Wells, Chem. Rev., 1963, 63, 171; C. Reichardt, Angew. ² E. Grunwald and S. Winstein, J. Amer. Chem. Soc., 1020, ..., 510, ..., 510, ..., Chem. Internat. Edn., 1965, 4, 29. ² S. Behrendt, C. H. Langford, and L. S. Frankel, J. Amer. Chem. Soc., 1969, 91, 2236. ³ J. Burgess, J. Chem. Soc. (A), 1969, 1899. ⁴ E. W. Crunden and R. H. Hudson, J. Chem. Soc., 1962, 3591.